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Application of Mixed H2/H. Optimization

Abstract

A nonconservative optimization technique is utilized to

examine the problem of minimizing the 2 norm of one transfer

function subject to an =-norm bound on another transfer

function. For single exogenous input/single exogenous

output systems this nonconservative mixed solution is shown

to be up to 5% better than a previous technique in a

specific example. For single exogenous input/two exogenous

output systems the mixed solution is shown to be up to 27%

better than a previous technique for a specific example.

Finally, a two exogenous input/two exogenous output

practical system is examined to demonstrate the utility of

this mixed optimization technique.
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Application of Mixed H2/H. Optimization

Chapter I. Introduction

1.1,Background

The designer of a Single-Input-Single-Output (SISO) or

Multiple-Input-Multiple-Output (MIMO) system must contend

with two major factors in the design process. First, the

design must minimize the energy of the output errors in the

face of input noises. Second, the design must minimize the

output errors given a non:noise bounded energy input that

would affect robustness. Noise sensitivity will be called

performance in this work, and using the LQG techniques in

modern control theory is easily handled. LQG by itself

however usually exacerbates robustness problems. LQG/LTR

addresses robustness in an unstructured manner, but an

acknowledged shortcoming in modern control design has been

the lack of visibility into performance/robustness trade-

offs.

Recent efforts have focused on characterizing this

problem with the 2-rorm as a measure of performance and the

c-norm as a measure of robustness. These are usually

referred to as H2/H. Optimization problems and they can be

formulated in a variety of different ways. The formulation

for this thesis can be stated as maximizing performance at a

1



given robustness level. Numerous approaches to this problem

currently exist, but only one is non-conservative. The non-

conservative approach was first forwarded in 1991 by Ridgely

[1] and will be referred to as the Mixed Solution throughout

this thesis.

The Mixed Solution has only recently become available

and allows H2/H. trade-offs to be made for a wide class of

systems. The robustness design parameter ,-an be used to

handle a variety of problems such as unmodeled dynamics,

sensor bias and disturbances, excessive gain scheduling, and

input disturbances.

1.2 Purpose

The purpose of this thesis is to demonstrate the use of

the Mixed Solution and compare results to other techniques.

First, the Mixed Solution will be compared to the H_ Central

controller for a system with a single exogenous input and a

single exogenous output ( I10). Then, the Mixed Solution

will be compared to the technique forwarded by Bernstein and

Haddad [5] for a system with one exogenous input and two

exogenous outputs (l120). Finally, a physically motivated

system with two exogenous inputs and two exogenous outputs

(2120) will be examined using the Mixed Solution to

demonstrate the practical aspects of this technique (no

other two-in two-out techniques exist for comparison).

Various plants will be used.

2



1.3 Overview

In Chapter 2, various aspects of control theory and the

role of H2 and H. theory are discussed. In Chapter 3, the

procedure and analysis techniques required to obtain a Mixed

Solution are discussed. In Chapter 4, problem synthesis,

description, and results for the 1M1O system are discussed.

Likewise in Chapter 5, the 1120 system is covered and in

Chapter 6 the 2120 system. Chapter 7 contains a summary and

conclusions followed by recommendations for further study.

The software package PRO-MATLAB was used for this

thesis. FORTRAN 77 (UNIX) was also utilized.
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Chapter II. Mixed H2/H. Control Theory

2.1 Singular Values, H. Norm, and &Norm

The basic analysis tool in multivariable control design

is the singular value versus frequency plot. The singular

values of a matrix A are related to the eigenvalues of A as

follows

o (A) - X1 (A A) 112 
(2.1)

with oi(A) = ith singular value
ki = ith eigenvalue
A* = complex conjugate transpose of A
A E C n

The largest singular value is denoted o and the smallest is

denoted (3. These two scalars are a measure of the size

(gain) of a transfer function matrix at a given frequency.

Thus, 0 and o are frequency dependent. In SISO systems, 0 =

o and a plot of o verses frequency is just the Bode

magnitule plot. The 2-norm is related to the area under the

o vs w (frequency) curve and is given by

12 _ 1 [i(2.2)

IG(jw)2 n - 2 Lr [G*(jw) G(jw) I d(

By Parseval's Theorem it can be seen that this is the

transfer function's total energy output. This nicely
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characterizes the energy of a system in the presence of

white noise.

The c-norm of a transfer function is given by

IG(ji)L=suPo [G(jw)] (2.3)

and is a measure of the maximum gain of the transfer

function. Thus, a singular value plot with a large spike,

and hence large o-norm, would not be considered robust at

the spike's frequency because any excitation at the

frequency of the spike causes a potentially disastrous gain.

Another way of looking at the o-norm this is through the

small gain theorem. Suppose we have

G

Figure 2.1 Small Gain Block Diagram

with G and A E RHL. Then this system is closed loop stable

if

IAI -IIGI_ < 1(2.4)
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If IG[. < y then

JAI_ 1 (2.5)
Y

is sufficient to guarantee stability of the system. Thus,

the smaller y (IGI,) is, the larger JAI. can be and still

have guaranteed system stability. If we think of A as a

system disturbance or uncertainty and G as a nominal closed-

loop system, then keeping y low will maximize the system's

disturbance tolerance or robustness.

2.2 Motivation and Characterization

Any physical system will have noise and uncertainty in

it. Thus, it makes sense to want to minimize the system's

sensitivity to noise and maximize its robustness. In this

thesis, this problem, called mixed H2/, optimization, is

formulated as:

infimize ITzN 2 subject to the constraint
K stabilizing that ITJ| s y

With a system as shown in Figure 2.2, T,, indicates the z to

w transfer function while Td the e to d transfer function.

6



d e
w P .-- -- - z

w Y

K y4

Figure 2.2 Standard Problem Block Diagram

The w input will normally be white noise while the d

input will be bounded energy disturbances. The following

definitions are helpful:

YO = inf ITedII
K stabilizing

OC = inf ITzwl2

K stabilizing

K2opt = K required to achieve (,

Y2 = ITedl- when K = K2opt

For clarity in the following discussion, consider T2w =

T~d. First, it can be seen that minimizing JTwI 2 will

produce a system of finite (and probably low) bandwidth in

7



order to minimize the area under the plot. However,

minimizing JT.I. typically produces a closed-loop system of

infinite bandwidth, as the low frequency energy is forced to

higher and higher frequencies. Thus, mixed H2/H,

optimization has competing objectives.

When HTJ is at co, the resulting controller (K2op,) is

unique. Thus, K2opt will produce a finite tTJ. (72) which is

as large as JTJ. will ever get in the mixed TH/H, problem.

As ITed approaches yo, IT7J 2 goes to infinity since the

closed-loop bandwidth (and thus area under the curve)

typically becomes infinite. A typical trade-off would look

like that in Figure 2.3.

No matter how large y gets, NTJ. will never exceed Y2.

In fact, it really makes no sense to talk about mixed H2/H-

solutions with Y>Y 2 since there is no trade-off, and the

solution is just trivially K2opl. The above plot has been

shown [1] to be monotonically decreasing for the Mixed

Solution.

Of key importance is that, for y>y0 , the controller

that gives JT J. ! y is not unique. An infinite number of

stabilizing controllers can achieve ITd[. r y. Thus, for

y.<y<y 2, the family of stabilizing controllers will contain

a controller such that IT2wI2 is a minimum given ITedI . s y.

In (1:120) it is shown that this minimum is achieved with a

controller such that ITedl = y. The curve given by a plot

such as in Figure 2.3 is, for the Mixed Solution, a true

8



trade-off; that is, for a given y level (and controller

order), no other controller exists that will give a lower

ITwi 2 . Currently, only the Mixed Solution can make this

claim, since other methods involve overbounds of varying

tightness.

0
z

N

]nfinity Norm Y2

Figure 2.3 Typical Performance/Robustness Trade-off

2.3 Mixed HHJ Control Theory [1]

Recall that the mixed H2/H. problem is

infimize ITwI 2 subject to IT.di,. !y

We are trying to find a controller K that accomplishes the

above.

This is a linear time invariant feedback control

system. Also note that this may be an output feedback

9



controller or a full state feedback controller. The

exogenous inputs in the d vector represent commands,

disturbances, etc. into the plant P. The regulated output

in the e vector is the system response that will be

associated with the x-norm. The exogenous inputs in the w

vector represent white noises coming into the plant P. The

regulated output in the z vector is the system response that

will be associated with the 2-norm. The output y is fed to

the controller K which generates the u input into P. The

plant can be represented in partitioned transfer function

form as

a.,d P.. Pe. (2.6)
P =P.-d P,., Pmu

which yields:

e Pd d +POW w+P. U (2.7)
e ed oww +euU

ZPdd + P, P (2.8)Z = ~ dd + P ww + P,,uU

Pd+ Pyw + u (2.9)= y ,d y ,,,w +%

Using a lower linear fractional transformation, the transfer

10



functions T,, and Td are:

(2.10)
T., =,, . + P.uK f -- PYK P,

(2.11)
Tra = Py + Pd K [ 1-dP.K Pyd

Note that the characteristic equation and hence system

stability is determined by the [I-P K]-' term. There are, of

course, "cross transfer functions" Te, and Tz, but neither

of them is directly addressed in the mixed problem. They

really don't need to be included, since any concern about

these cross transfer functions should be taken care of

through modeling.

A state space realization of P is given by

A Bd B,, B11
Ce i, D e d  De, D,.I (2.12)

C, Drd Drw D u

which results in:

(2.13)
x = A X + Bdd + Bww + Buu

e=C~+D~ +D 0 ~+D~u(2.14)
e = C x + D d + D w + mu(2.141

11



Z~CFXD~ddDVWDSUU(2.15)
z = Cx + Ddd + D,w + D,.u (2.16)

Y = YX +Dydd+ DYW + y~u(2.16.)

Note that D., must be zero or the 2-norm of T., will be

infinite for any controller. Dd and D.U are assumed to be

zero for convenience. Further, the plant must satisfy the

following conditions:

1) (A,Bu) stabilizable and (CY,A) detectable

2) D6 u Deu full rank and Dyd DydT full rank
3) Dz, Du full rank and D DT full rank

4) [A-JI Bu full column rank for all wI Ce D..

5) [A-j.I Bd full row rank for all w
Cy Dy

6) [A-jI Buj full column rank for all w
C. D.,

7) I A-jI BI full row rank for all w

I CY Dy

Condition 1 must be satisfied or there exists no stabilizing

controllers. Conditions 2) through 7) come from various

aspects of the individual H. and H. problems which are

assumed to be met in the mixed H2/H. problem [1].

12



The compensator K is given in state space by:

kc. =Acx¢ +BeY (2.17)

u = CCx C +DCy (2.18)

Again, to avoid an infinite ITI 2, Dc must equal zero. This

does not result in loss of generality [1]. This thesis

assumes that the order of the controller equals the order of

the plant. It as been shown [4] that the optimal controller

has an order higher than that of the plant (possibly

infinite). It is often true that higher order controllers

gain little in performance.

Closing the P-K loop results in:

(2.19)x =k+ ,gd d - ff,,

(2.20)

Z=-,, + Dd d (2.21)

where

13



BAC B,,C, (2.22)

lyd BBd dI (2.23)

C L YW(2.24)

0[C. D..Cc (2.25)

e,= [C_ D..Cc1 (2.25)

Note that closed loop system stability is determined by A.

Now,

IT 7 ~~ t[Q2CC~I(2.27)

where Q2 is the solution to the Lyapunov equation

'kQ2 +QC2 S 
T + ffBffT= (2.28)

Also, JTedl, :5 y if there exists a Q. = Q: 0 satisfying

AQ..Q..A~y ~(2.29)

14



with A stable. A is stable if (A, Bd) is stabilizable.

From here, the problem can be cast as a Lagrange

Multiplier Problem with J = ITI = tr [Q2C C21 (minimizing

the square of the function is the same as minimizing the

function). The constraints are the Lyapunov Equation 2.28

and the Ricatti Equation 2.29.

: + trfQ 2 QA T B(2.30)

+ t{rAQ+Q..A+ y 2C)_ CT f -dYI Y}

The first order necessary conditions for a minimum are found

by evaluating.

__- _ - _ -_ - - N - N =- (2.31)
aAC  aBc aCc a A aQ2 aQ.

These necessary conditions represent a set of 7 matrix

equations. These matrix equations, however, do not lend

themselves to an immediate solution. Numerical techniques

must be used. The particular technique used in this thesis

is covered in Chapter 3.

15



Chapter III. Analysis and Procedure

3.1 Solution Technique [1]

The objective is to generate a AT.w|2 versus ITdJ| curve

for a given system. This entails selecting a y (y, < y <

Y2) and solving the mixed problem. The 7 necessary

conditions mentioned in Chapter 2 are coupled and highly

nonlinear. No known analytic solution exists, so a

numerical technique must be used.

In order to facilitate a numerical solution, the

performance index is changed to

(2.36)J = (1 -V) tr [02 ( l + pt r (2.36)

where p is a numerical convergence parameter. At V = 1, the

problem ruverts to the minimum entropy problem with a well

known and easily obtainable solution. In jl:134], it is

shown that as p, 0 the solution does converge to the mixed

H2/H, solution.

The choice of numerical technique is critical, since

there are a large number of unknowns, the problem is highly

nonlinear, and computation of second derivatives (fourth

order tensors) is unwieldly. In connection with research in

this area, a Davidon-Fletcher-Powell (DFP) algorithm had

16



already been coded up in Fortran. The code was modified to

include a Ricatti solver and to allow for increased problem

size.

The DFP problem is formulated [8] as minimizing a scalar

function F given a vector of unknowns X. The direction, S,

in which to move the unknowns is given as a function of the

gradient VF(x)

S= HvF(x)

where H is the second derivative matrix. H does nct have to

be analytically derived; it cr .- approximated adequately.

The step size K is e- trmined by minimizing F(X + KS) by

numerical means. Equality boundaries are enforced by

artifically setting F(X + KS) to a large number (1016) if

the boundary is violated. This has the effect of causing

the step to back away from the boundary.

In this particular problem, the boundary constraints

are determined by four of the seven necessary condition

equations

17



(3.1)

AX +X + (I-~ 6.T l5 0 (3.2)

X-Q+QL-A+ y2Q+ JBf T =0 (3.3)

A+ y 2 +y + - +J ~tL 0 (3.4)

As shown in [1:143,144] the Q2, Q , X and Y solutions must

be positive semidefinite. Also, for ROO, (A + y-2 QC.dTCe) must

be stable. Note that A contains the controller Ac, B,, and

Cc matrices, and thus contains all the unknowns. The number

of unknowns is

(# states )2 + (# inputs)(# states) + (# outputs)(#states)

Convergence is checked by observing the change in F with

respect to the last iteration's F. With c as the

convergence criteria, this can be formulated as

vF 7:IvF (3.5)

IF(x) (

The flow diagram for this algorithm is given in Figure 3.1.

This problem does not have guaranteed convexity, so a good

starting point is critical. The starting point here is a

guess at the controller. In addition to satisfying ITJ-. !

18



y, the start point controller must satisfy Equations 3.1

through 3.4. Typically, when starting a new problem, this

would be chosen to be the H central controller, although

any admissible "nearby" controller is acceptable.

19



Initialize

x ,s

go Select Step to
MinimizeF(X+KS)

X=X + KS

< CeckConergnceTrue 

Stop

Update H

Update S

Figure 3.1 DFP Flowchart
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3.2 Procedure

Matlab is used to initially characterize the system by

finding Y.,Y 2, and a,. Normally, a y slightly greater than

y, is chosen, and then Matlab can be used to generate the H

central controller as a start point. This controller is

then transferred to a Fortran input file for use by DFP. Of

note is that the problem is easier to solve at y close to Y2

when using "overbound" start points, because the start point

x-norm is usually far less than the y that generated it.

Near yo, the slack in the ITdj5y portion of the problem is

getting much tighter (in fact going to zero). This means

that the start point becomes increasingly critical as y-,y.-

At each y level, the V that is initially set is a guess that

takes into account how close the starting point is to the

minimum entropy solution and how much R can be decreased

from the starting point and still get numerical convergence.

Starting with the H_ central solution, the first DFP run

would probably use .5!ss.99. The controller output from

that run is then used in a subsequent DFP run at a lower &.

The amount that V can be decreased between runs seems to

depend largely on the closeness to yo. Near y,, V might be

decremented as 0.9, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01,

whereas near Y2, P might be decremented as 0.5, 0.1, 0.01,

0.001. This is, of course, problem dependent, and one must

keep in mind that the problem may be changing drastically

with changes in V. From the problems that were done in
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connection with this thesis, a ji of about 0.001 is adequate

for convergence to the mixed solution at a given y level.

This gives IT.d|. = y to about four decimal places and IT,,I2

unchanging to about 7 decimal places. An advantage to

starting the y sweep near y0 and moving toward Y2 is that

subsequent y levels can be started using the converged

output controller from the previous y level (ITedi.s' and K

stabilizing is automatically satisfied). Thus, the H,

central controller need not be generated for each y level.

A procedural flowchart is given in Figure 3.2.
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set

get start
point controller

Place Controller
in 1. file

Select Input O.file
Guess

( set y Decrement ~u

ReConrler

Figure 3.2 Procedural Flowchart

23



3.3 Set-up

For a given physical system, the block diagram for the

system is manipulated into the state space form:

x=Ax + Bdd + Bw + B~u (3.6)

e=Cx + Dd + Dw + Du (3.7)

z=CZx + Ddd + Dw + Du (3.8)

Y=C x + Dydd + Dy, w + Du (39)

There are several tuning parameters available for the

designer to control the optimization. The P matrix elements

Bd, Bw, Ce, C,, Dyd, Dy, Deu, and Dzu are selectable and have

the following interpretation:
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Q)U

c. r

9z

A Bd B" BU
H. sLate penalty-. Ce 0 0 Deu H. control penal Ly
H2 state penalty-. C, 0 0 Du .- 12 control penalty

CY Dyd Dyw

a a

t0

From here, an input file is created (see Appendix A for an

example). The DFP program has all real numbers in DOUBLE

PRE.CISION format. For this thesis, all DFP runs were made

with the following parameters:

Q2 positive definiteness boundary = _10 -20

Q. positive definiteness boundary = _10 -20

X positive definiteness boundary = -10-10

Y positive definiteness boundary = -10-10

[A + Y-2 Q. Ce C8] stability boundary = +10-8

Convergence Criteria E (Checkstop) = +10-9

25



Chapter IV. One Exogenous Input One Exogenous Output

4.1 Problem Synthesis

This system has one exogenous input and one exogenous

output (1M1O). In standard form, it is represented as in

Figure 4.1:

d Do e
P

u Y

A Bd R.
p = C., 0 D..

C,, DydO

Figure 4.1 1I10 Standard Form

Thus, the mixed problem is

inf ITed|I subj-ct to |Te d1 ! Y
K stabilizing
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so that we are expecting both bounded energy inputs and

noise inputs to be contained in d and we are looking at

performance and robustness with respect to the same transfer

function. In other words, performance with a guaranteed

level of robustness, with respect to the sane transfer

function.

This is equivalent to

inf IT7wI 2  subject to ITJI s y
K stabilizing

with Ted - Tw. An associated block diagram for such a

system is shown ii, Figure 4.2.

Cee

Figure 4.2 System Block Diagram
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4.2 Background

Prior to the Mixed Solution, the best solution to this

problem was the Minimum Entropy or H. central solution. In

this chapter, the Mixed Solution will be compared with an

H. central solution for an example system. It has been

shown [6:12] that as y - the Minimum Entropy (ME) and the

H2 problem are equivalent. For y less than m, ITedL with

the ME controller is less than y and |TdI 2 with the ME

controller is an upper bound on the minimum ITI 2 . This

problem has an analytic solution. Changing the block

diagram to that in Figure 4.3, K is the lower linear

fractional transformation of J and Q, where

A,_ k K a I1
j= -K o sJ' -jo.IUJo

K,71  S Y 0 o Ti

J is found by solving a pair of algebraic Ricatti

equations (with both solutions positive semidefinite). The

only constraint on Q is that it be stable and that IQ[. < y-

Thus, a K such that ITJ T y is not unique. However, in

[6:19-22] it is shown that the ME controller is just J with

Q=O, and hence the name H. central. The ME controller then

is
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K=L §]

As noted in Chapter 2, this K is the same as the Mixed

Solution with = 1. Of key importance is that the ME

solution is really only applicable to 1I10 systems.

d e
P

u

Figure 4.3 Extended Standard Form
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4.3 Description

The system chosen was the same as in [i]. It is a

third order, unstable, minimum phase system, with

X1, I2 = -.6812 - j 1.182
X3 = +.9549

zeros at -1.1990
- .0490

The open loop singular value (SV) plot is shown in

Figure 4.4. Note the lightly damped zero. The state space

matrices are:

-.3908 -.4565 1.2661

A= 1.445 -1.049 1.208
-. 1288 .6744 1.0321

.0488 -. 427 51

Bd= 36081 B, = 44"/
1.3564J - .9172]

Ce=[.9420 .0144 .1187I

Cy=-1.55- -1.943 -. 0914]

Dyd=[ .5185]

De.-1. 3 5751
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101

100

10-2

10-310- 3 10 - 2 10- 1 100 101 102 103

Frequency (rad/s)

Figure 4.4 a-Plot of the Open Loop System

Looking at the closed loop system using the optimal H,,

controller, it can be seen in Figure 4.5 that an infinite

bandwidth system results with y. = 2.1426. As shown in

Figure 4.6, the controller also has infinite bandwidth.

Closing the loop with the H,,Pt controller results in a

higher x-norm and a more typical finite bandwidth singular

value plot (Figure 4.5). This controller results in Y2 =

4.163 and o = 3.248. Figure 4.6 shows that this controller

has finite bandwidth. Of note is that both controllers have

a spike corresponding to the lightly damped zero in the

plant.
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101

100

0 -1

10-2

(soid=Hinf-opl dashedh2-opt)

10-3 ______________________________________
10-3 10-2 10-1 100 101 102 101

Frequency (rad/s)

Figure 4.5 a-Plot of the H2 & H. Optimal Td

102

101

100
- --- --- ------------ ------

0-

10-2
(solid=Hinf-opt dashed=H2-opt)

10-3 10-2 10-1 100 101 102 0

Frequency (rad/s)

Figure 4 .6 0-Plot of 1'2 & H. Optimal Controllers
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4.4 Results

The Mixed Solution for this system was determined using

the procedure outlined previously. As shown in Figure 4.7,

the Mixed Solution is clearly better than the H. central

solution. The maximum difference between the two solutions

is about 5 percent at a yi, of about 2.5. As Figures 4.7

and 4.8 show, the two solutions converge as Y-4Y 2 or y-+o.

Table 4.1 shows the comparison for selected ymi,, levels.

Note that care must be taken in such a table because yei, =

IITed[O but ITed® ; yCENTRA so that for a fair comparison

either y.ix or yHcENTRAL should be adjusted such that ITdJ| is

the same.

7-

Mixed (-) and Central (--)

0

z 5

E-2

2 2.5 3 3.5 4 4.5 5

Ted Infinity Norm

Figure 4.7 Comparison of Mixed and Central Controllers
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5.5

5

4.5

4

3.5
0z

EV 2.5-

2-

1.5

1

0.5.
2 2.2 2.4 2.6 2.8 3 3.2 3.4

Ted Infinity Norm

Figure 4.8 Mixed and Central 2-Norm Difference

Table 4.1. Comparison of Mixed vs Central

Mixed H. central

Ymix I Ted| - I Ted 2  YHC I Tedl. I Tdl 2

2.15 2.15 27.6012 2.150 2.15 27.601

2.5 2.5 4.3536 2.540 2.5 4.5993

2.8 2.8 3.6345 2.9608 2.8 3.7956

3.7 3.7 3.2594 5.807 3.7 3.2765

4.163 4.163 3.248 00 4.163 3.248

Complete numerical data for the above curves can be found in

Appendix B.

Figure 4.9 shows the closed-loop Mixed Solution results
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for y.i. = 2.15, 2.5, 2.8, and 3.7 as well as the HP, and

H21pt curves. In Figure 4.9 the arrow shows decreasing y.

The progression from H2opt to Hp t with decreasing y is

clearly evident. Figure 4.10 shows the closed-loop H.

central solution results following the same trend from H2.pt

to HP t . Note that at H2opt, which corresponds to y = a, the

bandwidth is about 1 rad/s, while at y = 2.15 the bandwidth

is about 300 rad/s. The bandwidth goes to infinity with

just a small change to y = 2.1426, illustrating the highly

non-linear nature of the problem.

100

*~10-1

10-2

(solid line = H2-opt or Hinf-opt)

10-3  10-2 10-L 100 101 102 103

Frequency (rad/s)

Figure 4.9 o-Plot of Mixed Solution Ted
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101

100

*~10-1

10-z

(solid line - H2-opt or Hinf-opt)

10-31
10-3 10-2 10-L 100 101 1.2 I03

Frequency (rad/s)

Figure 4.10 o-Plot of H. Central Solution Td

In Figure 4.11, the Mixed Solution controllers are

shown (solid line shows H,,, and H20 Pt) for the same y levels

as before. Again, with the arrow in the figure showing

decreasing y levels, the progression from H2opt to R.p, is

clearly evident. Figure 4.12 shows very similar results for

the H. central controller.
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102

S Gamma Decreasing

101 /

S 0 ---------------------- - - --------- ~

S10-1

10-2

(solid line H12-opt or Hinf-opt)

10-3 10-2 10-1 100 101 102 103

Frequency (rad/s)

Figure 4.11 a3-Plot of the Mixed Controllers

102

SGamma Decreasing

101

100

10-1

(solid line =H2-opt or Hint-opt)

10-3 10-2 10-1 100 101 102 103

Frequency (rad/s)

Figure 4.12 o-Plot of the Central Controllers
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Comparing the Mixed Solution and H. central solution at

specific ITI|. levels reveals some of the differences

between the two solutions. As shown in Figures 4.13, 4.14,

4.15, and 4.16 there is virtually no difference in the

controllers below 1 rad/s. It is at the higher frequencies

that the differences become apparent. The roll-off appears

to be similar at high frequencies, but the Mixed Solution

roll-off appears offset downward. The amount of off-set is

greatest in the ITedI- = 2.5 to 2.8 range, which corresponds

to the area of greatest IT,, 2 difference between the two

solutions. The solutions become very similar at y near Y2

and y near yo, as expected.

102

101

.I 100

10-1

(soid=Hcentral dashed=Mixed)

10-3 10-2 0-i 100 101 102 10 3

Fi equency (rad/s)

Figure 4.13 o-Plot of Controllers (o-norm = 3.7)

38



102

101 -

*~100
be

(solid=Hcentral dashed=,Nixed)

10-21

Frequency (rad/s)

Figure 4.14 a-Plot of Controllers (Im-norm =2.8)

102

lot~

100

101

(solid=Hcentral dashed=Mixed)

10-3 10-2 10-1 100 101 102 0

Frequency (rad/s)

Figure 4.15 o-Plot of Controllers (ox-norm =2.5)
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102

101

100

(solid=Hcentral dashed=Mixed)

10-1
10- 10-2 10- 100 101 102 I03

Frequency (rad/s)

Figure 4.16 o-Plot of Controllers (w-norm = 2.15)

Looking at the closed loop comparisons in Figures 4.17,

4.18, 4.19, and 4.20, we see a very interesting phenomena.

At low frequency, the curves are flat (at the ITj,. value),

and then a roll-off begins near 1 rad/s. At this roll-off,

however, the Mixed Solution appears to make a sharper corner

than the H. central solution and its singular value plot

then passes under the H. central curve. This characteristic

is especially evident in Figures 4.18 and 4.19. Thus, the

mixed solution has a lower 2-norm because it is trading low

frequency gain for high frequency gain to lower the overall

area under the curve. The Mixed Solution is able to do this

because it can make a sharper corner to the roll-off. In
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fact, in (4], it is conjectured that the optimal order

controller would have a discontinuous corner. This would

take an infinite order controller.

100

10-2

10-3

10- 10-2 10-1 100 I0 102 10 3

Frequency (rad/s)

Figure 4.17 a-Plot of Ted $z-norm = 3.7)
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100

S10-1

02

(solid=Hcentral dashed=Mixed)

103 10-2 10-1 100 101 102 103

Frequency (rad/s)

Figure 4.18 a-Plot of Td (co-norm = 2.-8)

101

100

S10-t

(solid=HcentraI dashed=Mixed)%

10-3 10 -2 10-1 100 10' 102 103

Frequency (rad/s)

Figure 4. 19 a-Plot of Td (cc-norm =2.5)
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io

(solid=Hcentral dashed=Mixed)

10-3 10-2 10-1 10 1 0 2  10 3

Frequency (rad/s)

Figure 4.20 o-Plot of Ted (o-norm = 2.15)

Thus for the 1M1O system the Mixed Solution is superior

to the H central solution. As expected, the two solutions

converge at y, and Y2. The difference between the two

solutions seems to manifest itself as a sharper corner to

the roll-off in the Ted a-plot. This difference is greatest

for y's roughly mid-way between y. and Y2. The next level

of problem is the 1120 system that will be covered in

Chapter 5.
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Chapter V. One Exogenous Input Two Exogenous OutDrats

5.1 Problem Synthesis

This system has one exogenous input and tw- -xogenous

outputs (l120). In standard form it is represented as seen

in Figure 5.1:

e

u1 Y

A Bk, B,
C, 0QDeu

P= CZ  0 D U

Figure 5.1 1120 Standard Form

Thus, the mixed problem is

inf IT WD2  subject to ITJI. :. y
K stabilizing

so that we are modelling both bounded energy inputs and

noise inputs in w while evaluating the performance and

robustness with respect to separate outputs. A practical
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motivation for such a problem might be an active control

surface on an airplane; the motion of the airplane would

respond to actuator noise (or perhaps stabilizing high

frequency commands) as well as typical step flight path

commands coming into the control surface. Then T,, and To,

might represent high and low frequency models, respectively.

5.2 Background

The Mixed Solution has full capability to handle a wide

range of different models resulting in a 1120 system.

However, prior to the Mixed Solution the only solution to

this problem was Bernstein and Haddad's (B & H) approach

forwarded in [5]. This approach uses an overbound technique

and is somewhat restrictive, as will become apparent. The

Mixed Solution will be compared with a B & H solution on an

example system shown in [5]. The general B & H block

diagram is shown in Figure 5.2.
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e. Z2 w e, Z1  w2

A

Figure 5.2 System Block Diagram

Briefly reviewing the B & H approach, the equivalent

B & H state space representation is

A Di B

0 2

C D 2 0

and the following coupled set of Ricatti equation must be

solved:
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OAQ+QAT+Q(y-2RI.Z)Q+V, (5.1) 1

O= (A+y - 2 [Q+] R1 .) TP+P(A+y-2 [Q+j] RI.) (5.2)
-S TPE PS + Ri

O= (A-EP+y72QR,.) 6+6(A-EP+y 2QR1 .)T (5.3)
+(y - 2 (R + 2S T PZpS)) (+Q

where

VI --19119T

R, EIEj

R2 =E 2 E2R,. = EI:.E,.
y=B(E E 2 ) BT

C T (D2D2
T ) C

E,-=DE,

S= (1 + 2 y26P) -1

Note that the H. control penalty E2. must be a scalar

multiple of the H2 control penalty. The general B & H

equations 5.1, 5.2, and 5.3 are not analytically solvable,

and thus far no one has numerically solved them either.

However, with 0 = 0 they are solvable by Homotopy

Techniques. This is the case where there is no H. control

penalty, and in the example problem presented in [5] this is

what was chosen. The Ricatti Equations then become:
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O=AQ+QAT+Q(y-
2RI.-E) Q+V 1  

(54)

0- (A 4y2[Q+(] RI.P+P(A+y-2 [Q+6I RI.) (5.5)
-PEP+R

O= (A- P+y 2 QR.) 6 6(A -Zp + y2QRl.) T (5.6)
+&(y-2R,.) 6+0%Q

where

B,=QCT (R2 ) -1

cc= - (R 2 ) lB TP
AC =A+BCc -BcC+ y 2QRi.

Eqn 5.4 is uncoupled and may be solved immediately. A

direct Homotopy approach will solve Equations 5.5 and 5.6

for y* < y < o where y, < y* < Y2, but y* may be

substantially larger than yo. Therefore, a full ITJ|2 vs

ITew|o plot cannot be generated. A direct Homotopy algorithm

was coded in Matlab M.file form (BB.M in Appendix A), but it

was not possible to get y* very low for any example tried.

A different algorithm, forwarded in [3], was

subsequently coded up (BLACK.M in Appendix A) and found to

be much better. The Ricatti equations for this algorithm

are:
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0 = Tp,+ P - P P. R,(5.7)O=ATPo+ PoA- P0 ZP% R1  (7

(5.8)0O= (A A- E P) o + do (A A-Z P) T + (5.8

O=AQ+QAT+Q(y-
2 R 1.- E) Q+V, (59)

O (A+y -2 [Q+6] R1 .) TP+P(A+y-2 [0+§] R1.) (5.10)
-PEP+R

O= (A-,P+y - 2 (Q+ -) RI-) K- 1 (5.11)
2

+j§Kl (A-EP+y 2 (Q+-R.) +QQ

The flowchart diagram for this algorithm is shown in

Figure 5.3. Of note is that the only input required in this

algorithm is y. The algorithm generates its own start point,

so "solution cascading" going from a higher to a lower y is

not required. This algorithm was used to generate all B & H

solutions in this chapter.
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F find P, (5.7)

find 6. (5.8)

select y

find Q (5.9)

solve (5.10) for
PK. with 6=1K

solve (5.11) for

OK,1 with K and

PK.

check convergence 1K6+
of 6and Pj K 

0 +

> No

S compute

controller

Figure 5.3 Black Algorithm
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5.3 The Dual

For completeness, the dual of this problem must be

covered. This problem, as represented in Figure 5.4, was

first forwarded in (7]. It was subsequently shown in (2] to

be the dual of the BH problem.

d p e

w ?

u

Figure 5.4 Dual Standard Form

This problem is formulated as

inf ITwI 2  subject to ITdl| 5 y
K stabilizing

so that we are modelling bounded eneigy inputs in d and

noise inputs in w, with all outputs modelled in e.

The mixed state space representation is

A Bd B, B.
p = Ce 0 0 Deu

Y yd y

51



while the equivalent B & H state space is

Z i D, B
p= o0 0 E2

CD2_D2  0

Similar to the original B & H problem, D2. must be set to

zero to obtain the following set of Ricatti equations:

O=A TQ+QA+Q(y-2 V. E )Q+R (5.12)

O= (A+y-2V. [0Q+0] ) P+P(A+y-2V.[Q+5] )T  (5.13)
+ p1p+ v,

O= (A-pA -2V,_Q) T6+6 (A -P2 +y-2VQ) (5.14)
+ 6(y-2 V1 ) 0+ QEQ

where all definitions are the same as before, but with the

addition of DI., D2., and V1. (V1j = Dj D1 ). A direct

Homotopy algorithm in Matlab M.file form (BHD.M in Appendix

A) was coded, but no comparisons with the Mixed Solution

were done for this dual problem.

5.4 Description

The system chosen was the same as in [5]. It is an

eighth order, neutrally stable, non-minimum phase system,

with:
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X1, X2 = -.037 ± j 1.85
3, X 4 = -.028 ± j 1.41

X5 , K6 = -.015 ± j 7.65
X7 , K8 = 0, 0
zero at 1.0

In [5], it is said that this represents a physical system

which has coupled rotating disks with noncolocated sensors

and actuators.

The open loop singular value plot is shown in Figure

5.5. Of special note is the response between 0.5 and 3

rad/s, with three ripple-like spikes at 0.7, 1.5, and 1.9

rad/s. As will be seen, the controller is most active

controlling these spikes. The state space matrices are:

-.161 1 0 0 0 0 0 0
-6.004 0 1 0 0 0 0 0
-.5822 0 0 1 0 0 0 0

-9.9835 0 0 0 1 0 0 0

-.4073 0 0 0 0 1 0 0

-3.982 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

CeEi"-4 0 0 0 .00055 .011 .00132

C E 000 0 0 0 018
-F 00 0.00055 .011 .00132 .018

C,=C- [1 0 0 0 0 0 001

D,,,, =D; =f0 11
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0 0

0 0 0

.0064 0 0
.0064

.00235 0 .00235
B. D, B .001350713 0 .0713

1.0002
1.0002 0 .1045

.1045 0 .9955

.9955 0

Looking at the form of the above matrices we see that

an equivalent block diagram would be like that in Figure

5.6. The wi disturbance is coming into the plant added to

u. The disturbance w2 is coming into the output y.

Finally, the outputs e, and z, are being collected (through

the weighting matrix p..) directly from the plant states.

Thus the plant output y is uncoupled from the "unmeasured"

el and z, outputs that have a-norm and 2-norm significance,

respectively. Note the absence of e2 to place a penalty on

control effort expended on the oc-norm side of the problem.
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Frequency (rad/s)

Figure 5.5 a-Plot of the Open Loop System

Because the H. control penalty is zero, the H. optimal

controller is difficult to calculate for this problem. In

[3], a y. of 0.12 was found for this problem using bisection

techniques. Closing the loop with the H2opt controller gives

a T2w with the characteristics shown in Figure 5.7. This

controller results in m. = 0.37856. Note that this

controller (Figure 5.8) has three distinct dips

corresponding to the 0.7, 1.5, and 1.9 rad/s ripples in the
upper T,, a-plot. Figure 5.9 shows T.w with this H2opt

controller. Here, Y2 = |Tew® = 1.3923. Because el and z,

share the same weighting matrix (p.. in Figure 5.5), the

lower TZW a-plot is very similar to the Tew o-plot with the

same spikes and dips.
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Since the H. central controller is difficult to

generate for this problem, the B & H results served as a

starting point for the Mixed Solution. This worked very

well as long as ymi. was significantly greater than IT.J|..

The Mixed Solution would reliably start with R = 0.01 in

this case. The problem is that when the B & H problem

cannot be solved at a y near y,, the Mixed Solution has no

start point. The practical limit of about y = 0.27 was

found, below which the B & H solution wouldn't work to start

the Mixed Solution.

5.5 Results

The Mixed Solution is clearly better than the B & H

solution as shown in Figure 5.10. As yo is approached, the

difference between the two solutions becomes large, while as

Y2 is approached, the two converge to the same answer.

Table 5.1 shows the comparison for selected y,,, levels.

Once again, care must be taken in such a table because ITI.

y YBwhile ITew|® = Ymlx, so either YBH or Ymix must be adjusted

such that ITI. is the same.
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Figure 5.10 Comparison of Mixed and B & H Controllers

Table 5.1 Comparison of Mixed vs B & H

Mixed B & H

Ymix I TI. I Twl 2  YH I Iewl I T2 wI2
.27 .27 .8382 .2750 .27 1.1531

.40 .40 .5444 .4133 .40 .61521

.65 .65 .4281 .7046 .65 .4554

.75 .75 .4097 .8412 .75 .4288

1.00 1.00 .3865 1.329 1.00 .3931

1.37 1.37 .3786 6.81 1.?7 .3786

1.3923 1.3923 .3786 1.3923 .3786

Complete numerical data for the B & H curve can be found in

Appendix B.

Figure 5.11 shows the closed-loop Mixed Solution Te
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results for yi = 0.27, 0.40, 0.65, 0.75, 1.00, and 1.37 as

well as the H2 t Tw curve. In the figure, the arrow shows

decreasing y. The progression away from H2o p is readily

apparent. Note that as y progresses to lower values, the

major change in T.w is at low frequency (below 0.8 rad/s),

and above 1.5 rad/s no change is discernable. In Figure

5.12, the closed-loop Mixed Solution T,, results for the

same y levels are shown. Again the smooth progression away

from H2opt is evident. Note how low frequency energy is

being pushed out to higher frequencies as y is decreased.

In Figure 5.13, the Mixed Solution controllers are shown for

the same y levels. Of note here is that the Mixed

controller has only two dips in the y = 1.00, 0.75, and 0.65

cases; the 1.9 rad/s dip disappears.
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Figure 5.12 aj-Plot of the Mixed T,,
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10-3 10-2 10-1 10o  101 10 2  10 3

Frequency (rad/s)

Figure 5.13 a-Plot of the Mixed Controllers

Figures 5.14 and 5.15 show the closed-loop B & H

solution Tew and T,, results for the same y levels. These

curves show the same progression away from H21pl with

decreasing y, and show similar trend characteristics as

compared with the Mixed results. Figure 5.16 shows the B &

H controllers for these same y levels. It is very

interesting that the B & H controllers always possess three

dips, very similar to the H2opl, controller while the Mixed

controller, transitions to and from a three dip controller

depending on the y.
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Figure 5.15 a3-Plot of B & H T,,
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Frequency (rad/s)

Figure 5.16 a-Plot of B & H Controllers

Comparing the Mixed Solution and B & H solution at

specific ITe,,ji levels reveals some of the differences

between the two solutions. Starting with Figures 5.17 and

5.18, which show Tw and T.., respectively, at ITJ. = 1.37,

we see the two solutions are very close. Although it can

not be seen on these two plots, the Mixed Tew has a slightly

greater bandwidth than the B & H Tew, while the Mixed T,. has

a slightly higher peak sigma value than the B & H Tw. Both

of these trends will continue as y is decreased. The

controllers shown in Figure 5.19 are almost identical and

both show the three dip phenomenon. Moving down to [[Te wf

1.00, Figure 5.20 shows how the Mixed Tw has a larger
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bandwidth than the B & H T,. As in Chapter 4, it will

become increasingly apparent that as y decreases, as the

Mixed Solution is making a "sharper corner" to roll-off for

the o-norm side of the problem. In this figure, also note

the spike at 0.7 rad/s. As y gets lower this spike will

become increasingly important. Figure 5.21 shows that the

Mixed Solution is reducing higher frequency response of T..

by increasing lower frequency response (at the 0.08 rad/s

hump). Note that the Mixed controller in Figure 5.22 has

transitioned to a two dip controller, while the B & H

controller still has an H2opt-like three dip controller.

Thus, the Mixed Solution is not dealing with the 1.9 rad/s

Tzw ripple. In fact, the B & H controller always appears to

.e a scaled H2opt controller. At ITJ = 0.65, Figure 5.23

shows the increasingly large T.w spike at 0.7 rad/s. Note

that above 0.7 rad/s both the B & H solution and the Mixed

-olution are the same. Figure 5.24 shows the increasing

livergence between the two solutions for Tzw between 0.03

.nd 10 rad/s. Figure 5.25 shows the controller comparison

'imilar to the ITewl® = 1.00 controller. For ITewl® = 0.4

vigures 5.26 and 5.27 show T. and Tw respectively. Note

that for Tw the 0.7 rad/s spike nearly reaches aTeJ.. Again

note the sharpness of the roll-off corner. In the T,, curve

we see the Mixed Solutions pronounced ability to reduce the

gain above 0.3 rad/s. This was achieved with only a small

increase in the maximum Tw gain. Figure 5.28 shows the
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controller comparison for the IT.J. level. Interestingly,

the Mixed controller has now transitioned back to three

dips, probably to deal with the emerging 1.9 rad/s T,

spike. At ITwl.1 = 0.27, the lowest level, the problem is

changing radically. In Figure 5.29, the T,, 0.7 rad/s spike

has joined with the Mixed Tw curve at the roll-off point

resulting in a very sharp roll-off corner. Meanwhile, the B

& H roll-off corner is quite rounded. For the first time,

higher frequency differences are apparent as well. This is

shown better in Figure 5.30. The Tw curve in Figure 5.31

tells us why the JT,J 2 are so different for these solutions

at this |TJ level; the B & H TW has a large gain step at

0.7 rad/s that the Mixed Solution just does not have. The B

& H solution seems unable to trade-off this large spike for

a slight increase in lower frequency gain. Figure 5.32

shows both controllers having the same three dip

characteristic as H2 t. Thus, we can conclude that the H2

overbound used in the B & H solution becomes increasingly

poor as y is decreased. This is especially evidenced by the

iTeJ®=.27 T,+ plot, where the Mixed Solution is making shrewd

high/low gain trade-offs and the B & H solution is not.
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Figure 5.17 a-Plot of the T.., (m-noii 1.37)

(solid=B&H dashed=Mixed)

10102101 10 0 0

Frequency (rad/s)

Figure 5.18 o-Plot of the T,, (oc-norm =1.37)
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Figure 5.19 a-Plot of Controllers (oc-norm =1.37)
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Figure 5.20 a-Plot of T,, (~fo-nor = 1.0)
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Figure 5 .21o-Plot of oToler (o-orrm 1.1.0
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Figure 5.23 Co-Plot of T., (00-norm =0.65)
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Figure 5.24 uJ-Plot of T,~ (oc-norm =0.65)
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Figure 5.26 G -Plot of ters ( ,onor = .065
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Figure 5.27 a-Plot of T, (oo-norm =0.40)
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Figure 5.28 o-Plot of Controllers (cc-norm =0.40)
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Figure 5.29 a-Plot of T,, (oc-rorm =0.27)
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Figure 5.30 O-Plot of Te, (--norm =0.27)
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Figure 5.31 a-Plot of T,, (oo-norm =0.27)
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Figure 5.32 a-Plot of Controllers (oc-norm =0.27)
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Chapter VI. Two Exogenous Inputs Two Exogenous Outputs

6.1 Problem Synthesis

This system has two exogenous inputs and two exogenous

outputs (2120). In standard form, it is represented as in

Figure 6.1.

d ] e

u Y

A Bd B,, B.

~C.z 0 D. D,
P=CD D 0 z

- Y yd Dyw

Figure 6.1 2120 Standard Form

ThuL, the mixed problem is

inf ITzwl 2  subject to ITedI. S Y
K stabilizing

so that we are optimizing noise performance in the T,

transfer function while we are concerned about robustness in
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the Td transfer function. Ted, for example, could be

associated with command following error, while T,, could be

associated with plant response to noise.

6.2 Background

There are currently no other techniques to handle a

2120 system. The Mixed Solution is the only real solution

in this case. It is possible to generate an H. central

solution based only on Ted, but this is not really mixed at

all since T,, is not considered in the problem. The only

true comparisons in this case are with the R,,pt and H2,p

solutions at each end of the trade-off.

6.3 Description

The B & H system in Chapter 5 can be readily extended

to a 2120 problem with a block diagram as in Figure 6.2.

Manipulating the state space we have

x=Ax+B(u+Pd d1 +P.1 WO

y=C.+pd, d2 +p. 2 w2

e2  [Pe 2 UJ

fzjipl = -xl

Z2z P.2u

or
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A BpdI 0 Bp 7 0 B

Pei 0 0 0 0 0

0 0 0 0 0 Pe 2

P 1  0 0 0 0 0

0 0 0 0 0 p z 2

C 0 Pd2 0 P,, 2 0

e Z2 w1 di e, z, w2 d,2

~Pd2
P.2 P.2 NAr PdI .lIt-

V

Figure 6.2 System Block Diagram

The A, Bw, Bu, Ce, C,, Cy, D,,, and Deu matrices are as in

Chapter 5, while

Bd-B.

Thus, we have disturbances entering the system at the

plant input and output. Robustness is being measured with
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respect to some plant states different than the measured

states. Noise is also coming into the system at the plant

input and output, with performance being measured with

respect to some plant states different than the measured

states. All of the p weighting matrices are non-zero in

this example.

The RP, and H2opt controllers are as shown in Figure

6.3. Note the large gain increase in the Rop, controller

above 1 rad/s in contrast to the H2opt's roll-off. These

controllers result in y. = 0.12015, y2 = 1.3923, and xO =

0.3786. Figure 6.4 shows the resulting closed loop Tw and

Ted with the H20 pt controller. Since this is the Tw-H

rnntroller, IT1,l2 is minimized here, but Td is showing

similar charac*eristics with this controller. Figure 6.5

shows the resulting closed loop Td and Tw with the Kp t

controller. Here we see the typical flat 53 (Td) curve.

Note that JTwI 2 is going to infinity.

6.4 Results

The ITedI® versus ITwI2 trade-off is clearly shown in

Figure 6.6. This data is also displayed in Table 6.1.
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Figure 6.3 a-Plot of the H2 and R. Optimal Controllers
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Figure 6.4 a-Plot of the H20P, T,, arid Ted
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Figure 6.5 a-Plot of the Hp, T., and Td
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Figure 6.6 Mixed Controller Trade-off
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Table 6.1 Mixed Solution to 2120

y TITJI. I I TN 2  ]
.27 .27 .8381

.4 .4 .5444

.7 .7 .4180

1.1 1.1 .3824

Figure 6.7 shows the controllers transitioning from

H2opt to HoPt with the arrow pointing toward decreasing y.

Note the large change from y = .27 to y.. In Figure 6.8, T.

is shown progressing to the infinite bandwidth Ht solution

as y is decreased. Note that while NTJ|. is going down, the

minimum singular value is going up. Thus, a trade-off is

being made here, as well as between the 2-norm and o-norm.
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In Figure 6.9, TzW is shown progressing away from the H2oP1

solution as y is decreased. Note that the bandwidth

increases here as y is decreased.

10'

103
Hinf-opt and H2-opt shown solid

-0 I-o  Gamma Decreasing

4 00

10- -

10-3

10-4,.. _"" -. .

10-3 10-2 10-L 100 10' 102 I03

Frequency (rad/s)

Figure 6.7 a-Plot of the Mixed Controllers
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10-8 11 -1
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Frequency (rad/s)

Figure 6.9 O-Plot of Td~
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Looking at the y = .27 case, Figure 6.10 shows Td and

the Mixed controller (shifted up two decades for clarity).

The controller peaks at .9 and 1.8 rad/s can be seen to

correspond with dips in the maximum Td singular valie at

those frequencies. Notice the similarity the controller has

to the minimum Td singular value plot, caused in this

problem by the way the state and control penalties are

structured. Figure 6.11 shows T.w and the Mixed controller,

but the relationships here are not so clear. Figure 6.12

and 6.13 show similar characteristics for y = .7.

102 -

10-I

100 -

10-1.0 10_-2 ....

1 0-4

10-6 

10-7 Controller (solid/shifted up 2 decades) and CL Ted (dashed) .
1 0 - 68 . . . 1 -. . ...... . . . . . . ... . .... . .. . . - .... . . . . . .... . .

10-3 lO-2 10-1 100 101 102 10 3

Frequency (rad/s)

Figure 6.10 a-Plot of Controller and Td (o-norm = .27)
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103 10-2 10-1 100 10' 102 101

Frequency (rad/s)

Figure 6.11 o-Plot of Controller and T,~ (cc-norm 2 27)
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.~101 --

10-2 J

10-i ?

10-8-

Controller (solid/shifted up 2 decades)-

01002 011010 0

tO-s CL Ted (dashed)i0

Frequency (rad/s)

Figure 6.12 o-Plot of Controller and Ted (or-norm =.7)
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10-3 10-2 10-' 100 101 102 10 3

Frequency (rad/s)

Figure 6.13 o-Plot of Controller and T,, (o-norm = .7)

Thus, the Mixed Solution provides complete visibility

into the o-norm versus 2-norm trade-off for the 2120 system.

This practical example again showed the solution to be on

the o-norm boundary where ITedl, = Y.
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Chapter VII. Conclusions and Recommendations

7.1 Summary and Conclusions

The objective of this thesis was to apply a newly

developed nonconservative mixed optimization solution to

several example problems and compare this solution to the

best previously available solutions. The final measure in

the comparison was the 2-norm versus a-norm trade-off curve.

In Chapter 2, various aspects of control theory and the

role of H2 and H. theory were discussed. Chapter 3 covered

the procedure and analysis techniques required to obtain a

Mixed Solution.

The 1I10 example was looked at in Chapter 4. The

comparison in this case was done between the Mixed and

H. central solutions for a third order SISO system. The

example showed that the Mixed Solution does converge to the

H2opt solution at Y2 and to the Hp, solution at y,. For Y, <

Y < Y2, the Mixed Solution is superior to the H central

Solution because of the latter's conservative overbound. In

this specific example, the difference peaked at the mid-

range y, and was approximately 5 percent of the 2-norm.

A 1120 example was covered in Chapter 5. For this

system, the Mixed Solution was compared with the Bernstein &

Haddad Solution for an eighth order system. This particular

example problem came from the original Bernstein & Haddad
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paper demonstrating their solution and included the

limitation that the H. control penalty must be zero. The

example showed that both the Mixed Solution and the

Bernstein & Haddad solution converge to the same (H21,p)

solution at Y2. For y < Y21 the Mixed Solution is superior

to the Bernstein & Haddad solution, again because of the

latter's conservative overbound. As in the 1M1O comparison,

the hallmark of the Mixed Solution appears to be the sharper

corner to the roll-off that it makes on the Td plot.

Chapter 6 looked at a 2120 eighth order example system.

This system was chosen as an extension of the 1120 Bernstein

& Haddad system because of its practical motivation

(actuators, sensors, and spinning masses). No comparison to

previous results was possible in this case, because no other

solution exists to this problem. The example again showed

again that the Mixed Solution converges to the H. pt or H2 opt

solution at their respective y's. The example clearly

showed the a-norm versus 2-norm trade that is possible.

7.2 Recommendations

Practical applications still need to be looked at in

earnest. Several of the practical examples that were looked

at could not be done with the software code used in this

thesis, because either the problem would not numerically

start, or once started would not converge. It is not known

whether this is related to modeling, numerics, or software,
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but this is definitely an area of further study.

As an adjunct to this, further refinements to the

current numerical algorithm might help its robustness and

speed. Perhaps a whole new algorithm could better find the

solution.

For the current algorithm, finding a start point for a

system greater than 1M1O is very time consuming because of

numerous points that should work, but do not. A reliable

method of finding start points would be a worthwhile

investment.

Finally, the Mixed Solution has a large number of

tunable parameters. The practical techniques of using these

parameters to achieve desired results still needs to be

investigated.
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Appendix A: Selected Software Items

This appendix contains the PRO-HATLAB user written
routines utilized in this thesis and an example of an
input file to the Fortran based DFP program.

BH.M algorithum for solving the Bernstein and Haddad
problem:

g2=1/( gam*gam);
a=am;
b=bm;
c=cm;
vl=dl*dl';
v2=d2*d2';
ri-el' *el;
r2-e2' *e2;
rlinf=elinf' *elinf;
sig=b*inv( r2 )*b';
sigbar=c'*inv(v2)*c;

% solve for q

f=a';
g=-~(g2*rlinf-sigbar);
h=vl;
q=are( f.g,h);

%initialize p

%p=eye(n);

p=pchest;

% iterate between qhat and p equations

error-1;
while error>.O0l

f=(a+g2*q*rlinf-sig*p);
g=-g2*rlinf;
h=q*sigbar*q;
qhat=are( f,g,h);

f=(a+g2*(q+qhat)*rlinf);
g=sig;
h=rl;
pold=p;
p=are(f,g,h);

A- 1



error-norm(p-pold, 'fro')

end

disp( 'converged')

% check answers

if abs(cj'-q)>1O^(-5)
disp('q not symetric')
e rd

if min (eig(q)) < 0
disp('q not positive definite')
min(eig(q))
end

if abs(qhat'-qhat)>1O-(-5)
disp('qhat not positve definite')
end

if min(eig(qhat)k<O
disp('qhat not positive definite')
end

if abs(p'-p)>1O^(-5)
disp('p not symmetric')
end

if min (eig(p))<O
disp('p not positive definite')
min(eig(p))
end

% compute the controller

bc~q*c'*inv( r2);
cc--iriv( r2)*b'*p;
ac=a+b*cc-bc*c+g2*q*rlinf;
dc=O;

%compute ci system

ta,b,c,d]=lftf(pfwd,[8,2,1,4,1j,ac,bc,cc,dc);

%compute norms

h=mynorm(a,b,c(1:2,:),zeros(2,2))
hinf=h( 2)
h-myno rm (a, b, c (34, :),zeros (2 ,2))
h2-h( 1)
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BLACK.M algorithum, for solving the Bernstein and Haddad
problem using the K. Black technique:

g2=1/(gam*gam);
a-am;
b'=bm;
c=cm;
vl-dl*dl';
v2=d2*d2';
rl=el 'el
r2=e2' *e2;
rlinf=elinf' *elinf;
sig=b*inv( r2)*b';
sigbar-c'*inv(v2) *c;

% find gamn = infinity p and qhat

f=a;
g=sig;
h=rl;
pzero=are( f,g,h);
z=a-sig*p;
x=sigbar;
qhatz=lyap( z,x);

% solve for q

g=-(g2*rlinf-sigbar);
h-vl;
q=are(f,g,h);

% iterate between qhat and p equations

p=pze ro;
qhatk=qhatz;
error-l;
k=O;
while error>.OOOO0l

k=k+1

f=(a+g2*(q+qhatk)*rlinf);
g=sig;
h=rl;
pold=p;
p=are( f,g,h);

z=a-sig*p+g2* (q+qhatk/2) *rlinf;
x=q* si gba r*q;
qhatk=lyap(z,x);
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error~norm(p-pold, 'fro')

end
disp( 'converged')

% check answers

if abs(q'-q)>10-(-5)
dispC'q not symeti-ic')
end

if min (eig(q)) < 0
disp('q not positive definite')
rin(eig(q))
end

if abs(qhatk'-qhatk)>10-(-5)
disp('qhat not positve definite')
end

if min(eig(qhatk))<O
disp('qhat not positive definite')
end

if abs(p'-pb>1O^i-5)
disp('p not symmetric')
end

if min (eig(pMkO
disp('p not positive definite')
min(eig(p))
end

% compute the controller

bc=q*c'*inv(r2);
cc=-inv( r2)*b'*p;
ac=a+b*cc-bc*c+g2*q*rlinf;
dc=O;

%compute ci system

[a,b,c,d]=lftf(pfwd,[8,2,1,4,1],ac,bc,cc,dc);

%compute norms

h-mynorzn(a,b,c(l:2,:),zeros(2,2))
hinf=h(2)
h=mynorm( a,b, c( 3:4, :) ,zeros (2,2))
h2=h( 1)
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BHD..M algorithum for solving the dual of the Bernstein
and Haddad problem:

g2=l/( gam*gam);
a~am;
el-ce;
c-cy;
dl=bw;
d2=dyw;
dlinf-bd;
d2inf=dvd;
b=bu;
e2=deu;
vlinf=dlinf*dlinf';
vl=dl*dl';
v2=d2*d2';
ri-el' *el;
r2=e2' *e2 ;
sig=b*inv( r2)*b';
sigbar=c'*inv(v2)*c.

% solve for q

f~a;
g=-(g2*viinf-sig);
h=rl;
q=are(f,g,h);

%initialize p

%p=eye(n);
p=pchest;

% iterate between qhat and p equations

error=l;
while error>.O0l

f=a+g2*vlinf*q-p*sigbar;
g=-g2*vlinf*q;
h=q*sig*q;
qhat=are( f,g,h);

f=(a+g2*vlinf*(q+qhat))';
g=sigbar;
h=vl;
pold=p;
p=are( f,g,h);

error=norm( p-pold, 'fro')
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end
disp( 'converged')

%check answers

if abs(q'-q)>1O^(-S)
disp('q not symetric')
end

if min (eig(q)) < 0
disp('q not positive definite')
min(eig(q))
end

if abs(qhat'-qhat)>10- (-5)
disp('qhat nct positve definite')
end

if min(eig(qhat))<0
disp('qhat not positive definite')
end

if abs(p'-p)>10^(-5)
disp('p not symmetric')
end

if min (eig(p))<O
disp('p not positive definite')
min(eig(p))
end

% compute the controller
0

bc=-p*c'*inv(v2);
cc=inv( r2 )*b'*q;
ac=a+bc*c-b*cc+g2*vlinf*q;
dc=0;

%compute ci. system

[a,b,c,d]=lftf(p2,[3,2,1,l,1,ac,bc,cc,dc);

%compute norms

h=mynorm( a,b( 1:6,1) ,c,d);
hinf=h( 2)
h=mynorm(a,b(i:6,2) ,c,d);
h2-h( 1)
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This is an example of an input file to the Fortran based
DFP program. It contains all dimensions, state space
matrices, numerical parameters, and an initial controller
guess.

THIS IS THE I.file FOR THE DIRECT METHOD
THE SISO MIX NUMBER 1 PROBLEM GAMMA 3.5 Mu .000000

THE DIMENSIONS ISTATE, NU, NYND,NE ,NW,NZ
8 1 1 2 2 2 2

THE PARA,'IETERS GAMMA AND MU (2D11.6)
0.730D+00 0.10OD+00

THE 'TOLERANCES OF: 1-D SEARCH, CHECKSTOP (21)11.6)
O.100D-03 0.100D-04

THE A MATRIX (8F8.4)
-0.16100E+00 0.10000E+01 0.OOOOOE+00 Q.OOOOOE+00
0.OOOOOE+0Q 0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00

-0.60040E+01 0.00000E-00 0.10000E+01 0.OOOOOE+00
0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00
-0.58220E+00 0.OOOOOE+00 0.OOOOOE+00 0.2.OOOOE+01
0.OOOOOE+00 0.00000E+00 0.OOOOOE+00 0.00000E+00

-0.99835E+01 0.OOOOOE+00 0.OOOOE+.00 0.OOOOOE+00
0.10000E+01 0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00

-0.40730E+00 O.OOOQQE#OO O.OOOOOE+O0 0.OOOOOE+00
0.OOOOOE+00 0.10000E+01 0.OOOOOE+00 0.OOOOOE+Q0

-0.39820E+01 0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00
O.OOOOOE+00 O.OOOOOE+00 0.10000E+01 0.OOOOOE+0O
0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00
0.OOOOOE+00 0.OOOOOE+00 0.OOOQOE+00 0.10000E+01
0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+O0 C.OOOOOE+0O
0.OOOOOE+00 0.OC0OOE400 0.OOOOOE+00 0.OOOOOE+00

THE BU MATRIX AS BU TRANSPOSE
0.OQOOOE+00 0.OOQOOE+00 0.64000E-02 0.23500E-02
0.71300E-01 0.10002E+01 0.10450E+00 0.99550E+00

THE BD MATRIX AS BD TRANSPOSE
0.OOOQOE+00 0.00000E-00 0.64000E-02 0.23500E-02
0.71300E-01 0.10002E+01 0.10450E+~00 0.99550E+00
0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00
0.OOOOOE+00 0.OOOQOE+00 0.OOOOOE+00 0.OOOOOE+00

THE BW MATRIX AS BW TRANSPOSE
0.OOOOOE+00 0.OOOOOE+00 0.64000E-02 0.23500E-02
0.71300E-01 0.10002E+01 0.10450E+00 0.99550E+00
0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00
0.OOOOOE+00 0.00000E*CO 0.OOOOOE+00 0.000OOE+00

THE CY MATRIX
0.10000E+01 0.00000E-i00 0.OOOOOE+00 0.00000E+00
0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00
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THE CE MATRIX
0.OOOOOE+00 O.OOOOE+00 O.OOOOOE+00 O.OOOOOE+00

0.55000E-03 0.11000E-01 0.13200E-02 0.18000E-01
0.OOOOOE+00 O.OOOOOE+00 O.OOOOE+00 O.OOOOOE+00

0.OO00E+00 O.OOOOOE+00 O.u0OOOE+00 O.OOOOOE+00

THE CZ MATRIX
0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00 0.OOOOOE+00
0.55000E-03 0.11000E-01 0.13200E-02 0.18000E-01
0.OOOOOE+00 0.00000E 00 O.OOOOOE+00 0.0000E-00
0.OOOOOE+00 0.00O0E-O00 O.OOOOOE+00 0.OOOOOE+00

THE DYD MATRIX
o.0000uE+00 0.10000E+01

THE DYW MATRIX
0.00000E+00 0.10000E-01

THE DEU MATRIX
0.OOOOOE+00
1.OOOOOE-04

THE DZU MATRIX
o.OOOOOE+00
0.10000E+01

THE AC MATRIX (COLUMNS 1 - 4)
-0.17045507697D+01 0. 10000000000D+01 0. OOOOOOOOOQD+00 0. 00000000000D0-+C
-0.72062271373D+01 0. 00000000000D+00 0.10000000000D+01 0.0000000000CD.CC
-0.97874078270D+01 0 51082188294D-02 0 .69041782133D-02 0 .9982182351iD- '0
-0.15856634151D+02 0 18756741014D-02 0.25351279377D-02 -0.65424179507D-C3
-0.15640813718D+02 0. 56908750396D-01 0 .76916860407D-01 -0. 19849974463D-0I
-0.12892587618D+02 0 79831882393D+00 0.10789936014D+01 -0. 27845644401D+C,
-0.63547130042D+01 0 83407635573D-O1 0.11273228489D+00 -0 .29092879823D-Ci
-0.33964959280D+01 0.79456747572D+00 0.10739233455D+01 -0.27714796042D*00

THE AC MATRIX (COLUMNS 5 - 8)
0.19953075890D-02 0.3990E151780D-01 0.47887382136D-02 0.65300975640D-0i
0.22716649979D-02 0.45433299958D-01 0 4 19959949D-02 0.74345399931D-0o
-0.24804614306D-01 -0 . 44703834031D+00 -0. 5536356870D-01 -0.73278478339D. '

0.99793142253D+00 -0 . 23359553586D-01 -0.34977755986D-02 -0.38690133929D-CI
-0.39625920718D+00 -0 .63786925285D+01 -0.90654244797D+00 -0.12088672144D+u=
-0.58756954262D+01 -0.10984769656D+03 -0.12477369584D+02 -0.17994886255D+ 3

-0.60422527221D+00 -0. 11283546485D+02 -0.13849144072D+01 -0.17484681044D+C2
-0.58592457757D+01 -0.10955472754D+03 -0.13440824044D+02 -0.17946852788D0-3

THE BC MATRIX
0.15435507697D+01
0.12022271373D+01
0.91953201896D+01
0.58695035337D+01
0.15123359258D+02
0.73653352902D+01
0.61932664252D+01

0.18585048340D+01

THE CC MATRIX (COLUMNS 1 - 4)
-0.15449433389D+01 0.7981U919209D+00 0.10787778458D+01 -0.27840076386D[-CD'

THE CC MATRIX (COLUMNS 5 - 8)
-0.58902951070D+01 -0.11014122311D+03 -0.13512533653D+02 -0.18342913911DQG3
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Appendix B. Data

Table B. 1 CENTRAL H. RESULTS (II10)

y ITed 2 jTedL.

Yo 2.1426 291.55 2.1426

2.1500 27.601 2.1500

2.1600 18.146 2.1599

2.1700 14.55 2.1698

2.1800 12.526 2.1796

2.1900 11.190 2.1894

2.2000 10.225 2.1991

2.2100 9.4877 2.2088

2.2200 8.9018 2.2184

2.2300 8.4223 2.2280

2.2400 8.0211 2.2375

2.2500 7.6792 2.2470

2.2600 7.3838 2.2564

2.2700 7.1254 2.2658

2.2800 6.8971 2.2751

2.2900 6.6937 2.2844

2 .3C00 6.5111 2.2936

2.32 6.1961 2.3119

2.34 5.9336 2.3299

2.36 5.7109 2.3478

2.38 5.5193 2.3655

2.40 5.3527 2.3830

2.42 5.2062 2.4003

2.44 5.0764 2.4174

2.46 4.9605 2.4343

2.50 4.7625 2.4675
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Table B.1 cont.

y ITed12 ITedl-
2.55 4.5629 2.5080

2.60 4.4023 2.5474

2.65 4.2704 2.5856

2.70 4.1602 2.6228

2.75 4.0671 2.6589
2.80 3.9874 2.6939

2.85 3.9186 2.7280

2.90 3.8586 2.7610

2.95 3.8061 2.7931

3.00 3.7598 2.8243

3.10 3.6821 2.8840

3.20 3.6198 2.9403

3.30 3.5691 2.9935

3.40 3.5274 3.0436

3.50 3.4926 3.0909

3.70 3.4386 3.1779
3.90 3.3992 3.2555
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Table B.2 MIXED RESULTS (1110)

y 11 TedI2  ITedl.
*Yo 2.1426

2.15 27.6012 2.1502

2.16 17.9685 2.1600

2.17 14.3460 2.1701

2.18 12.2802 2.1800

2.19 10.9172 2.1900

2.20 9.9325 2.2000

2.21 9.17185 2.2100

2.22 8.5782 2.2200

2.23 8.0863 2.2300

2.24 7.6743 2.2400

2.2-5 7.3231 2.2500

2.26 7.0209 2.2600

2.27 6.75)76 2.2700

2.28 6.5193 2.2800

2.29 6.3104 2.2900

2.30 6.1423 2.3000

2.32 5.8002 2.3200

2.34 5.5319 2.3400

2.36 5.3050 2.3600

2.38 5.1100 2.3800

2.40 4.9425 2.4000

2.42 4.7945 2.4200

2.44 4.6645 2.4400

2.46 4.5489 2.4600

2.50 4,3536 2.5000

2.55 4.1601 2.5500

2.60 4.0075 2.6000

2.65 3.8850 2.6500

2.70 3.7852 2.7000
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Table B.2 cont.

y, 1ITed12 ITedL_
2.75 3.7030 2.7500

2.80 3.6345 2.8000

2.85 3.5770 2.8500

2.90 3.5280 2.9000

2.95 3.4863 2.9500

3.0 3.4506 3.0000

3.1 3.3936 3.0999

3.2 3.3520 3.1998

3.3 3.3203 3.3000

3.4 3.2969 3.4000

3 .5 3.2798 3.4999

3.7 3.2594 3.6999

3.9 3.2502 3.9273
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Table B. 3 B & H Results (1120)

.2371 1.7908

.2574 1.3401

.2'/76 1.0675

.2977 .0936

.3179 .8011

.3382 .7 327

.3585 .6837

. 3/8'/ .6464

.3988 .6168

.4188 .5926

.4386 . 5122

.4582 .5548

.4/176 .5397

.4967 .5263

.5156 .5145

.5342 .5039

.5525 .4944

. 5/06 .4858

.5883 .4781

.6058 .4710

.6411 .4583

.64718 .4561

.6488 .4558

.6526 .4546

.6593 .4525

.6631 .4513

.6640 .4510

.66'1'1 4499
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Table B.3 cont.

IT0,, T,,,l2
.6745 .4479

-7119 .4378

.7684 .4250

.8220 .4151

.8712 .4015

.9270 .4004

.9750 .3954

1.0254 .3910

1.0676 .3880

1.1099 .3855
1.1481 .3836

1.1839 .3821

1.2131 .3811

1.2400 .3804

1.2631 .3799

1.2830 .3795

1.3002 .3192

1.3140 .3790

1.3268 .3789

1.33'6 .3788

1.3466 3187

1.3542 3787
1.3606 .3786

1.3659 .3786

1.3704 .3786
1.3741 .3786
1 .3I2 .3786
1 .319 .3786
1.3819 .3786
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